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Abstract. It is proven that all geodesics in a mean gravitational field can be interpreted locally as the aver-
ages of geodesics in the unaveraged field. The respective time-like, space-like or null character of averaged
and unaveraged geodesics is discussed carefully. Finally, some important astrophysical and cosmological
applications and consequences are investigated.

PACS. 03.50.-z Classical field theories – 05.20.Dd Kinetic theory – 04.20.-q Classical general relativity

Notations and terminology

In this article, space-time indices running from 0 to 3 will
be indicated by Greek letters. The metric signature will be
(+,−,−,−). I also have chosen, as a rule, not to use the
so-called intrinsic notation in differential geometry and
to stick to the notation standard in physics, which de-
notes every tensor by its components. Moreover, since each
curve considered in this article will only be studied in a
single parametrization, no systematic explicit distinction
between curves and graphs has been deemed necessary.

1 Introduction

General relativity is commonly believed to be the right
theory of non-quantum gravitation [16]. It models [15] the
physical space-time by a 4D differentiable manifold, en-
dowed with both a metric and a connection. Einstein’s
theory further assumes that the connection is completely
determined by the metric and that both are linked to the
stress-energy tensor of the matter present in space-time
through the so-called Einstein equation. The general rel-
ativistic gravitational field is thus essentially a metric de-
fined on the space-time manifold or, equivalently, a metric
and its associated Levi-Civita connection.

Mean field theory plays an important role in practi-
cally every branch of physics; it therefore comes as no
surprise that developing a mean field approach to gravita-
tion has been the subject of active research for more than
a decade (see for example [2,5,6,8,17]). This conceptually
and practically crucial problem has been recently solved
in quite general a way. It has been shown [3] that, given
a statistical ensemble Σ of space-times sharing a common
topology, it makes both mathematical and physical sense
to define the mean space-time associated to this ensemble
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as a space-time of the same topology, but where the grav-
itational field is represented by a metric which is simply
the average of the metrics corresponding to the various
space-times members of Σ.

This mean-metric defines geodesics on the physical
space-time; these are the geodesics of the mean gravita-
tional field. In particular, those which are time-like or null
can be interpreted as the trajectories of point-like parti-
cles in the mean gravitational field. It then seems only
natural to wonder if there is any correspondence between
these geodesics (be they time-like, null or space-like) and
the geodesics in the original space-times members of the
statistical ensemble Σ. In particular, is it possible to view
each geodesic of the mean space-time as the statistical
average of a collection of geodesics, each member of the
collection being a geodesic in one of the space-times in Σ?

The aim of this article is to elucidate this question
in as general a manner as possible and to discuss some
connected astrophysical and cosmological problems. The
matter is organized as follows. Section 2 is devoted to
reviewing some basic definitions and results concerning
statistical ensembles of space-times and the mean gravi-
tational fields with which they are associated. Section 3
concerns the very definition of geodesics; part of the ma-
terial presented there is naturally not new, but it has been
included to make this article as self-contained as possible.
Let us be more precise about the contents of Section 3.
On a differentiable manifold where connection and met-
ric are two a priori independent fields, one can construct
two generally different sets of curves which might be both
considered as geodesics. One set depends on the metric
and the other one is entirely fixed by the connection. In a
general relativistic space-time, where the connection is the
Levi-Civita connection of the metric, both sets coincide
and one thus has two completely equivalent but compu-
tationally very different definitions of geodesics. Section 3
elaborates on this point and makes clear which of these
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two definitions is best suited for studying the workings of
the averaging procedure described in Section 2.

The main results of this article are presented in
Section 4. Let Σ be a statistical ensemble of space-times
with common topology. Given an arbitrary point M and
an arbitrary vector U at this point, one can consider,
for each space-time in Σ, the unique geodesic which
passes through M with tangent U at M . By varying the
space-time in Σ, one obtains a collection σM,U of geodesics
which depends on both M and U . To the best of my
knowledge, the existing literature does not provide with a
general, geometrically natural method to average, at least
locally, such a collection of curves into an intrinsically1

defined ‘average curve’. It is argued in Section 4 that this
problem is solved by considering the geodesics of the mean
metric.

Indeed, given an arbitrary chart C common to all
space-times in Σ around point M (see Sect. 2.1), it is pos-
sible to define at least two generally different curves of the
mean space-time which one might be tempted to view as
averages of the geodesics in the collection σM,U . Loosely
speaking, the first of these curves, χC , is obtained by aver-
aging the coordinates of the points on the geodesics while
the second one, ξC is obtained by averaging the momen-
tum components. The retained notations2 emphasize that
these two ‘average curves’ generally depend on the choice
of the chart C. In other words, these curves are not intrin-
sic objects and different coordinate choices will generally
lead to different average curves.

The principal result of Section 4 can now be stated as
follows. Given an arbitrary neighborhood N of point M ,
the unique geodesic γ̄M,U of the mean space-time which
passes through M with ‘velocity’ U provides, for all
charts C defined on N , a respectively first order and second
order approximation to the curves χC and ξC . Since γ̄M,U

does not depend on the choice of a chart, this geodesic can
be viewed as the natural, intrinsically defined curve aver-
aging the geodesics of the collection σM,U in the neigh-
borhood N of M . Because the result is moreover valid
for arbitrary M and U , this also proves that any (given)
geodesic of the mean space-time can be viewed locally as
the statistical average of a collection of geodesics belong-
ing to the various members of Σ. Appendix A elaborates
a little further on the definitions of χC and ξC

The result of Section 4, together with some re-
lated astrophysical and cosmological problems, is dis-
cussed in Section 5. Section 5.1 elaborates on the respec-
tive time-like, space-like or null character of the various
geodesics involved in the averaging. Section 5.2 provides
some rough calculations and orders of magnitude that
strongly suggest that using a mean field theory to study
geodetic motions of particles on a cosmological scale does
furnish fairly accurate results. Section 5.3 discusses how

1 The definitions retained in this article for the terms ‘intrin-
sic’ and ‘covariant’ are given in Appendix A.

2 The notations χM,U,C and ξM,U,C would certainly be more
accurate than the chosen ones but they have been judged un-
necessarily cumbersome since all the geodesics being averaged
pass through a common point M with the same ‘velocity’ U .

the Sachs equations model the evolution of a beam of pho-
tons and justifies the use of the mean field approximation
in these equations. Finally, Section 6 provides a summing
up of the contents of this article.

2 Mean gravitational field

2.1 Ensembles of space-times

Let us consider a statistical ensemble Σ of space-times
M(ω), ω ∈ Ω; Ω is a measured but otherwise arbitrary
set (probability set [7]). Each member of the ensemble Σ
is a differentiable manifold endowed with a metric g(ω)
and a connection Γ (ω). The covariant derivative operator
defined by the connection coefficients Γ (ω) will be de-
noted ∇(Γ (ω)).

We will restrict the discussion by supposing that, given
any two space-times M(ω1) and M(ω2) in Σ, there al-
ways exists a one-to-one bi-continuous mapping between
their points3. One can then choose an atlas common to all
manifolds in Σ and, for any chart, (i.e. any local coordi-
nate system (x)), represent every member of the statisti-
cal ensemble Σ by an ω-dependent metric field g(x, ω) and
ω-dependent connection coefficients Γ α

µν(x, ω). In a some-
what less precise, but more physically oriented language:
all space-times in the ensemble have a single, common
topology and are distinguished only by their respective
gravitational fields.

Each space-time M(ω) is an Einstein space-time. This
means that its metric and connections verify the equations
of general relativity. The first of these equations [15] ex-
presses the so-called compatibility of the metric with the
connection; one has, for each ω ∈ Ω:

∇µ(Γ (ω)) gαβ(ω) = 0 (1)

for any µ, α, β = 0, 1, 2, 3. This implies that the Γ (ω)’s
can be expressed in terms of the metric tensor g(ω) and
of its partial derivatives [15]:

Γ α
µν(ω) =

1
2

gαβ(ω)
(

∂gβν(ω)
∂xµ

+
∂gβµ(ω)

∂xν
− ∂gµν(ω)

∂xβ

)
. (2)

In (2), the gαβ(ω)’s are the coordinate basis components
of the tensor g−1(ω) inverse to the metric g(ω).

The connection can also be represented by another set
of coefficients [10]. One defines:

Γµ,αβ(ω) = gµν(ω)Γ ν
αβ(ω) (3)

and one finds immediately from (2) that:

Γµ,αβ(ω) =
1
2

(
∂gµα(ω)

∂xβ
+

∂gµβ(ω)
∂xα

− ∂gαβ(ω)
∂xµ

)
. (4)

3 Such a mapping is called an homeomorphism [11] and its
existence traces the fact that M(ω1) and M(ω2) have the same
topology.
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The second equation [15] of general relativity is the
Einstein equation proper:

Eµν(∇(Γ (ω)), g(ω)) ≡ Rµν(ω) − 1
2
R(ω)gµν(ω)

= χgµα(ω)gνβ(ω) T αβ(ω). (5)

The Rµν ’s are the coordinate-basis components of the
Ricci-tensor, R is the trace of this tensor, T is the
stress-energy tensor of the matter in space-time and χ is
the gravitational constant. The combination on the left-
hand side of (5) is usually called the Einstein-tensor of the
metric and the connection, hence the notation.

2.2 Definition of a mean space-time

It has been shown in [3] that the statistical ensemble Σ of
space-times can be used to define a single, mean Einstein
space-time M̄ and that, by construction, the atlas com-
mon to all members of Σ can be used as an atlas for M̄. As
all Einstein space-times, M̄ is characterized by a metric ḡ
and a connection Γ̄ which obey the equations of general
relativity. The metric ḡ is the average of the metrics g(ω)
over ω; one thus has, for all x:

ḡ(x) = 〈g(x, ω)〉, (6)

where the brackets on the right-hand side indicate an av-
erage over the statistical ensemble Σ. The connection Γ̄ is
simply the connection compatible with the metric ḡ. Since
equation (4) is linear in both the metric g and the ‘covari-
ant’ connection coefficients, one simply has, for all x:

Γ̄µ,αβ(x) = 〈Γµ,αβ(x, ω)〉 . (7)

This naturally entails that the Christoffel symbols of the
mean connection are not identical to the averages of
the Christoffel symbols associated to the various space-
times M(ω) members of Σ. A thorough discussion of the
mathematical and physical motivations for definition (6)
can be found in [3].

Because the Einstein tensor depends non linearly on
the connection and the metric, the Einstein tensor Ē =
E(∇(Γ̄ ), ḡ) associated to the mean connection and mean
metric does not generally coincide with the average of the
Einstein tensors E(∇(Γ (ω)), g(ω)). The tensor Ē is nev-
ertheless the Einstein tensor of the mean space-time. It
therefore defines, via Einstein equation, a stress-energy
tensor T̄ for the mean space-time. The tensor T̄ can nat-
urally be expressed as the average of a certain tensor τ
over the statistical ensemble Σ; one thus has, for all x,
T̄ (x) = 〈τ(x, ω)〉. The exact expression for τ(ω) in terms
of T (ω), g(ω) and Γ (ω) is given in [3]. This expression
actually describes the change in the equation of state of
the matter upon averaging over the statistical ensemble
of space-times. As shown in [3], this change is highly non
trivial. In particular, the vanishing of T (ω) for all ω does
not necessarily imply the vanishing of τ(ω). The mean
stress-energy tensor T̄ can therefore be non vanishing in

regions where the unaveraged stress-energy tensor actu-
ally vanishes. A complete general discussion of this and
other perhaps unexpected consequences of definition (6)
can be found in [3]. The particular cases where the matter
is made of an electromagnetic field and/or of a possibly
charged perfect fluid is also addressed in depth by [3].

3 Geodesics

Let us consider an arbitrary differentiable manifold M en-
dowed with a connection Γ and a metric g not necessarily
compatible with Γ (M is therefore not supposed to be an
Einstein space-time). One can consider on M two gener-
ally different kinds of geodesics.

3.1 Geodesics of the connection

A first set SΓ of geodesics is made of those curves whose
tangent vector is parallel propagated along itself. This set
of curves depends only on the connection Γ , and not di-
rectly on the metric g. It can be shown [15] that, after
proper parametrization, the differential equations of these
curves x(λ) read:

uµ =
dxµ

dλ
, (8)

and
duµ

dλ
= −Γ µ

αβuαuβ. (9)

The geodesics in SΓ may be called the geodesics of the
connection. Equations (8) and (9) are equally valid for
space-like, time-like and null geodesics.

3.2 Geodesics of the metric

The second set of geodesics Sg can be defined through
a variational principle which involves only the metric g
and not the connection. These geodesics will be called the
geodesics of the metric. One can actually construct sev-
eral variational principles [1,12,15] which all deliver these
same geodesics, but with possibly different parametriza-
tions. For the purposes of this article, only one of these
principles needs to be considered and I will discuss it now
in full detail. This variational principle presents the great
advantage of applying equally to time-like, space-like and
null geodesics.

Let us fix two points M and N with coordinates X
and Y in M and consider the curves x(λ) which pass
through M and N (x(a) = X , x(b) = Y ) and extremize
the ‘action’:

A
{

X, Y, x(λ),
dx

dλ

}
=

1
2

∫ b

a

gµν(x(λ))
dxµ

dλ

dxν

dλ
dλ

=
∫ b

a

L

{
x(λ),

dx

dλ

}
dλ. (10)
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The use of braces (as opposed to round brackets) in (10)
takes into account the fact that both A and L are func-
tionals of x(λ), and not functions. The ‘momentum’ p(λ)
conjugated to x(λ) is:

pµ(λ) =
δL

δẋµ
= gµν(x(λ))

dxν

dλ
(11)

where the standard notation ẋ =
dx

dλ
has been used. This

can be inverted to give:

dxµ

dλ
= gµν(x(λ)) pν(λ). (12)

The ‘equation of motion’ for p reads:

dpµ

dλ
=

δL

δx
=

1
2

∂µgαβ |x(λ)

dxα

dλ

dxβ

dλ
. (13)

Equations (11) and (13) apply equally to the space-like,
time-like and null geodesics; so does the ‘action’ A. A
parametrization of the geodesic for which equation (13)
applies is said to be affine.

3.3 Coincidence of the two sets of geodesics
in Einstein space-times and consequence

All the space-times that will be considered in the remain-
der of this article will be Einstein space-times, endowed
with a metric g and a connection Γ compatible with each
other. It is a standard result (see for example [15]) that
the two sorts of geodesics coincide in these space-times and
they will be called simply the ‘geodesics’ of the space-time.
Let us remark that a parametrization for which (9) applies
is then affine, in the sense introduced of Section 3.1.

The geodesics of Einstein space-times can thus be de-
scribed by two completely equivalent equations. The first
equation (9) involves only the usual connection coefficients
(Christoffel symbols) Γ µ

αβ while the other one (13) con-
tains only the derivatives of the metric g.

As described in Section 2.2, the metric of the
mean space-time associated to a statistical ensemble of
space-times Σ is simply the average of the metrics asso-
ciated to the various members of Σ. On the other hand,
the Christoffel symbols of the mean connection are indeed
related to the averages of the Christoffel symbols of the
space-times in Σ, but in no simple and direct way. Equa-
tion (13) is thus best suited for studying how the averaging
procedure introduced in Section 2 works on geodesics.

4 Geodesics of the mean space-time
as statistical averages

Let us consider again (see Sect. 2) an ensemble Σ of
Einstein space-times M(ω). Each space-time M(ω) is
endowed with a metric g(ω) and the associated connec-
tion Γ (ω), defined by (2).

Our goal is to relate, by a suitable averaging procedure,
the geodesics of the mean space-time to the geodesics of
the various space-times in Σ.

4.1 Averaging a collection of geodesics

Equations (11) and (13) make clear that, in any given
space-time, an arbitrary geodesic x(λ) is completely deter-
mined, at least locally, by a point through which it passes
and the value of the ‘velocity’ dx/dλ along the geodesic
at that point.

We will therefore proceed as follows. Let us pick an
arbitrary point M , a neighborhood N of M , a chart C
defined on N , common to all elements M(ω) of the sta-
tistical ensemble Σ, and let X be the coordinates of M
in C.

Let also U be an arbitrary vector tangent to the space-
time at M and let us focus on the geodesics which pass
through M with ‘velocity’ U at point M .

Each of these geodesics can be represented, in the
chart C, by a set of 4 functions xµ(λ, ω) defined over,
say I ×Ω. By convention, the retained parametrization is
supposed to be affine and the interval of variation of the
parameter λ, denoted by I, can be taken without restric-
tion to be common to all geodesics under consideration.
Without any loss of generality, we further impose λ = 0
at x = X . The set of all these geodesics constitutes an M -
and U -dependent collection of geodesics σM,U .

Each member γ(ω) of σM,U verifies the geodesic equa-
tions (11) and (13):

pµ(λ, ω) = gµν(x(λ, ω), ω)
∂xν

∂λ |λ,ω
(14)

and

∂pµ

∂λ |λ,ω
=

1
2

∂µgαβ(ω)|x(λ,ω)

∂xα

∂λ |λ,ω

∂xβ

∂λ |λ,ω
. (15)

One can construct two generally different curves which
one might be tempted to consider, at least in the retained
coordinate system, as averages of the geodesics in σM,U .
Being averages, these two curves will be treated as curves
in the mean space-time M̄. The first average curve, χC(λ),
is defined (in the chart C) by:

χµ
C(λ) = 〈xµ(λ, ω)〉 (16)

and the associated ‘momentum’ �(λ) is:

�µ(λ) = ḡµν(χC(λ))
dχµ

C
dλ

. (17)

As before, the brackets 〈· · · 〉 indicate statistical averaging
over ω; in (16), the averaging is therefore done at fixed
value of λ. If the probability measure on Ω is denoted
by dpω, (16) simply means:

χµ
C(λ) =

∫
Ω

xµ(λ, ω) dpω. (18)

Note also that (16) implies:

dχµ
C

dλ
=

〈
∂xµ(ω)

∂λ

〉
(19)
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Because of (16) and (19), the ‘initial’ conditions for χC
are:

χµ
C(0) = Xµ (20)

and
dχµ

C
dλ |0

= Uµ. (21)

Equation (17) then implies:

�µ(0) = ḡµν(X) Uν . (22)

As already mentioned in the Introduction (and as re-
flected in the very notation χC), the curve χC depends, not
only on the geodesics in σM,U , but also on the chart used
in definition (16). In particular, χC can therefore not be
considered as an ‘intrinsic average’ of the geodesics in the
collection σM,U , since different choices of C lead to differ-
ent curves χC . Note however that a given curve χC , once
defined by (16) within the chart C, can also be described
in other charts by parametric equations obtained from the
expression of the functions χµ

C(λ) by the appropriate co-
ordinate changes.

Physically, χC represents to any observer using the
chart C a natural average of the geodesics in the col-
lection σM,U . The preceding remark on the non intrin-
sic character of definition (16) just means that different
observers would then disagree on the definition of the av-
eraging procedure.

The second ‘average’ curve ξC(λ) is defined through its
‘momentum’ components πµ(λ) in the chart C:

πµ(λ) = 〈pµ(λ, ω)〉 (23)

and ξC(λ) is then fixed by:

πµ(λ) = ḡµν(ξC(λ))
dξν

C
dλ

(24)

and the ‘initial’ condition:

ξµ
C (0) = Xµ. (25)

As before, (23) simply means:

πµ(λ) =
∫

Ω

pµ(λ, ω) dpω, (26)

where dpω is the probability measure on Ω. Because
of (23), one has:

πµ(0) = 〈gµν(X, ω)Uν〉
= ḡµν(X)Uν (27)

and (25) and (24) then imply:

dξµ
C

dλ |0
= Uµ. (28)

As χC , the curve ξC does depend on the chart C used
in definitions (23) and (24); in other words, ξC is not an
intrinsic object. To an observer who uses the coordinate
system C, the curve ξC represents a second average of

the geodesics in σM,U , alternate to χC . And, like χC , the
curve ξC , once defined in C by equations (23) and (24),
can also be described in other charts by standard para-
metric equations obtained from the expression of the func-
tions ξµ

C (λ) by the appropriate coordinate changes.
Let us end this section by stressing that the two curves

χC(λ) and ξC(λ) are generically distinct, as can be seen by
the following, very simple argument:

πµ(λ) =
〈

gµν(x(λ, ω), ω)
∂xν

∂λ |λ,ω

〉

�= 〈gµν(〈x(λ, ω)〉 , ω)〉
〈

∂xν

∂λ |λ,ω

〉
= �µ(λ). (29)

However, by equations (22) and (27), πµ(0) = �(0). Both
curves therefore pass through point M , not only with the
same ‘velocities’, but also with the same ‘momenta’.

The reader is referred to Appendix A for covariant
definitions of χC and ξC .

4.2 Link with the geodesics of the mean space-time

Let us now introduce the geodesic γ̄ of the mean-metric ḡ
which passes through point M with ‘velocity’ U for λ = 0.
We will now show that γ̄ provides, around point M , a first
order approximation to all curves χC and a second order
approximation to all curves ξC . The geodesic γ̄ of the mean
gravitational field can thus be considered as the natural,
intrinsically defined local average of the geodesics in the
collection σM,U .

All the following calculations will be carried out in a
single but arbitrary chart C defined around point M and
the parametric equation of the geodesic γ̄ in C will be
denoted by x̄(λ).

For any smooth curve y(λ) of the mean space-time
which passes through M at λ = 0 with ‘velocity’ U , one
can write:

yµ(λ) = Xµ + λUµ +
1
2

λ2 d2yµ

dλ2 |0
+ O(λ3). (30)

Let q(λ) be the ‘momentum’ along the curve y(λ):

qµ(λ) = ḡµν(y(λ))
dyν

dλ
. (31)

Differentiating (31) with respect to λ, one obtains:

dqµ

dλ
= ∂αḡµν |y(λ)

dyν

dλ

dyα

dλ
+ ḡµν(y(λ))

d2yν

dλ2
(32)

which leads, for λ = 0, to:

d2yµ

dλ2 |0
= ḡµν(X)

[
dqν

dλ |0
− ∂αḡνβ |XUαUβ

]
. (33)

By (30) and (33), the second order behaviour of y(λ)
around λ = 0 (point M) is therefore entirely fixed by the
value of dq/dλ at λ = 0. Let us evaluate this quantity for
both ξC(λ) and x̄(λ).



148 The European Physical Journal B

As far as ξC(λ) is concerned, equations (23) and (15)
imply directly:

dπµ

dλ |0
=

〈
∂pµ

∂λ |0,ω

〉

=
1
2

∂µḡαβ |XUαUβ. (34)

Now, by definition of geodesics, the ‘momentum’ p̄(λ)
along the curve x̄(λ) verifies the equation:

dp̄µ

dλ
=

1
2

∂µḡαβ |x̄(λ)

dx̄α

dλ

dx̄β

dλ
. (35)

This leads to:

dp̄µ

dλ |0
=

1
2

∂µḡαβ |XUαUβ , (36)

which, together with (34), proves that:

dp̄µ

dλ |0
=

dπµ

dλ |0
. (37)

One therefore has, by equations (30) and (33):

x̄µ(λ) − ξµ
C (λ) = O

(
λ3

)
. (38)

Since the chart C has been kept arbitrary, the
geodesic x̄(λ) is locally (around point M) a second-order
approximation (in λ) to all the curves ξC(λ).

On the other hand, (29) shows that, generically, the
first derivatives of π and � at λ = 0 do not coincide, even
though π(0) = �(0). Thus, generically,

x̄µ(λ) − χµ
C(λ) = O

(
λ2

)
(39)

and
ξµ
C (λ) − χµ

C(λ) = O
(
λ2

)
(40)

for all charts C. The geodesic x̄(λ) is therefore only a
first-order approximation to the curves χC(λ) and the
two curves χC(λ) and ξC(λ) also differ by second-order
terms.

The validity of equation (38) for all charts C (and, to a
lesser degree, the validity of Eq. (39)) makes it natural to
define the intrinsic average of the geodesics in the collec-
tion σM,U as the geodesic of the mean space-time γ̄ which
passes through M with ‘velocity’ U .

Since both X and U have so far been kept arbitrary,
this conclusion can be restated in the following, perhaps
more illuminating way. Let us pick an arbitrary geodesic γ̄
of the mean space-time M̄ and a point M on this geodesic.
Let U be the ‘velocity’ at point M along this geodesic (for
a given affine parametrization). Then, around point M ,
γ̄ is the natural, intrinsically defined average of all the
geodesics of the ‘unaveraged’ space-times M(ω) which
pass through point M with ‘velocity’ U .

The locally defined average of the collection of
geodesics σM,U is thus a geodesic of the mean space-time
and, conversely, any given geodesic in M̄ appears as local
average of geodesics of the various space-times M(ω).

5 Discussion

This section is organized as follows. The first Section (5.1)
comments upon the final statement of Section 4.2 by
adding to the material hitherto presented a discussion of
the respective time-like, space-like or null character of the
various geodesics involved in the averaging procedure. Sec-
tions 5.2 and 5.3 are devoted to astrophysical and cosmo-
logical problems directly connected with the general issue
of the present article. Section 5.2 provides some rough cal-
culations supporting the view that the mean-field approxi-
mation does furnish reasonable results on the cosmological
scale. Section 5.3 discusses how the Sachs equations model
the evolution of a beam of photons and justifies the use of
the mean-field approximation in these equations.

5.1 Respective character of the various geodesics

Let us elaborate on the time-like, space-like or null char-
acter of the involved geodesics. This character is entirely
determined by the vector U . But whether U is time-like,
space-like or null depends on the metric one uses to eval-
uate U2. As a consequence, the geodesic γ̄ being, say,
time-like does not necessarily imply that all geodesics γ(ω)
are also time-like. One can nevertheless write:

ḡµν(X) UµUν = 〈gµν(X, ω)UµUν〉 , (41)

which only allows the following three, very general con-
clusions. First, if U is time-like (resp. space-like) in M̄
at X , there is then at least one of the M(ω) in which U is
time-like (resp. space-like) at X . Second, if U is time-like,
space-like or null at X in all the space-times M(ω), it
is then also time-like, space-like or null at X in M̄. Fi-
nally, if U is null in M̄ at X , then U is either null in
all space-times of the statistical ensemble Σ, or Σ con-
tains space-times for which U is time-like together with
space-times for which U is space-like.

This has some important physical consequences. Free
general relativistic point-particles move on time-like or
null geodesics. The preceding remark shows that a sys-
tem may behave as a point-particle on large scale (i.e. in
the mean space-time M̄) but not on smaller scales (i.e. in
members M(ω) of the statistical ensemble of space-times
which is used to define M̄). In other words, the concept of
point-like (test-)particle is not scale-invariant. This echoes
the general conclusion that the equation of state for mat-
ter is changed upon averaging the gravitational field [3].

On the other hand, a system which behaves as
a point-like particle on some scale will also behave locally
as a point-like particle on all larger scales.

The very special case of ensembles of conformal metrics
deserves particular mention. Suppose all the metrics g(ω)
are conformal to one another; in that case, one can pick
up one of these metrics, say g̊ = g(ω0), and write for
all ω ∈ Ω:

g(ω) = F 2(ω)̊g, (42)
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where F (ω) is the so-called conformal factor relating g(ω)
to g̊. One has then:

ḡ = 〈g(ω)〉 =
〈
F 2(ω)

〉
g̊

= F̄ 2g̊, (43)

which defines F̄ and also shows that ḡ is conformal to g̊
and, therefore, to all the metrics g(ω).

Now, metrics conformal to one another share the same
light-cone structure [15] and any vector which is time-like,
space-like or null for one of these metrics is also time-like,
space-like or null for the other metrics. Thus, in case the
statistical ensemble is made of metrics conformal to one
another, the mean metric is conformal to all the met-
rics in the ensemble and, therefore, any geodesic γ̄ of M̄
shares its time-like, space-like or null character with all
the geodesics γ(ω) of which it is the local average.

5.2 Orders of magnitude: what does ‘locally’ mean
in the cosmological context?

As insisted upon in Section 4, the interpretation of the
geodesics of the mean metric as averages of the geodesics
of the fluctuating field is only local, in the mathematical
sense of the word. But what does ‘local’ mean in practical
astrophysical or cosmological applications? In particular,
is the mean field approximation justified on scales com-
parable to the Hubble length? This apparently innocuous
question is actually very difficult to answer in its full gen-
erality. Considering however the importance of the issue,
it has been deemed necessary to include a preliminary dis-
cussion of it in this article. What follows is only intended
to give a flavor of what tackling the problem entails; the
results to be presented also suggest that the mean-field
approximation is reasonable in the cosmological context,
but the arguments of this section can by no means be con-
sidered fully rigorous. It is hoped that their presentation
will serve as an incentive to further, perhaps numerical
study and, de facto, to a complete treatment and valida-
tion (or invalidation) of the mean field approximation in
studying geodetic motions on the cosmological scale.

Let us consider a photon which is detected on Earth,
at point E of space-time, after having travelled through
a temporally and spatially fluctuating gravitational field.
Let V be the detected ‘velocity’ of the photon at point E.
To reconstruct the trajectory of the photon before its de-
tection, one needs a statistical ensemble of space-times
which correctly models the fluctuating field and which
takes into account the fact that a photon was ‘detected’ at
point E with velocity V . Such a statistical ensemble will
typically be represented by an ensemble of metrics g(ω)
which all coincide at point E and for which V is null at
point E:

gµν(XE , ω)V µV ν = 0. (44)

Investigating precisely the motion of the photon in such an
ensemble, even for very special forms of the metrics g(ω),
is extremely difficult and can best be achieved by extensive
numerical simulations.

However, if one’s primary interest lies in knowing only
if the mean field approximation does (or does not) re-
main valid for motions over cosmological scales, it is for-
tunately possible to replace the preceding problem by a
slightly more general one, which, thanks to its more gen-
eral character, is at least susceptible of a rough analytical
treatment.

The idea is simply to replace the point E in the pre-
ceding problem by an arbitrary point M where all metrics
of the ensemble of space-times do not necessarily coincide
and to investigate ‘how fast’ the trajectories which orig-
inate from point M with a common ‘velocity’ U diverge
from the trajectory in the mean field. Naturally, since all
metrics of the statistical ensemble coincide at point E but
generally do not at point M , one expects the trajectories
that pass through M with a given ‘velocity’ U to diverge
faster than those which pass through E (with a common
‘velocity’ V not necessarily equal to U).

In the notations of the preceding sections, the set of
geodesics corresponding to the first, ‘physical’ problem is
σE,V and the set of geodesics corresponding to the more
general problem is σM,U . According to the remark above,
the validity of the mean field approximation is more strin-
gently tested on σM,U than on σE,V . Consequently, if the
mean field approximation is shown to be valid over cos-
mological distances for the geodesics of σM,U , one can rea-
sonably think it will also be valid for the geodesics of σE,V

i.e. in the real, ‘physical’ problem.
The final aim of this section is to present some order

of magnitude estimates that support the mean field ap-
proximation over cosmological distances for the geodesics
of σM,U .

To proceed, let us introduce an ensemble Σ of
space-times (metrics) which adequately models, in the
cosmological context, the fluctuations of the gravitational
field. In a chart C common to all members of Σ, the met-
ric g(x, ω) of M(ω) takes the form [4,13]:

ds2
ω = a2(t) (ηαβ + hαβ(x, ω)) dxαdxβ (45)

where η stands for the Minkovski metric, a(t) is the
expansion factor of the universe and h(x, ω) represents
the perturbation to the homogeneous, isotropic, spatially
flat model characterized by a(t). Observational cosmology
seems to indicate that only a very small fraction of the
physical space-time is possibly endowed with large curva-
ture fluctuations [13]. This translates into | h |= O(ε) � 1,
where the vertical bars denote a suitable norm on the func-
tion space to which h(., ω) belongs. We also suppose that,
by construction, the ensemble Σ verifies 〈h(x, ω)〉 = 0
for all x; this ensures that the average metric ḡ does in-
deed correspond to the homogeneous isotropic model de-
termined by the expansion factor a: ḡµν = a2(t)ηµν . The
ω-dependent perturbation δgµν(ω) to this mean metric is
simply δgµν(ω) = a2(t)hµν(ω) and | δg | / | g |= O(ε).
The coordinate t is sometimes called the conformal time.
Its relation to the so-called comoving time widely used in
cosmology is given by equation (54) below.

We further impose on Σ a condition similar to (44):

gµν(X, ω)UµUν = 0 (46)
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for all ω ∈ Ω. This ensures that, in each space-time of the
ensemble, the trajectory of the photon is a null geodesics
of the metric associated to this space-time. As a conse-
quence, U is also null for the average metric and therefore,
in the chart C, U0 =

√
U2, (where U2 stands for the stan-

dard Euclidean square of U). Finally, X will stand for the
coordinates of point M in C and the affine parameter used
along all the geodesics will be taken to vanish at point M .

The validity of the mean field approximation can be
measured, in the working chart C, by the two different
functions of λ, ∆(λ) =| x̄(λ) − χC(λ) | and δ(λ) =|
x̄(λ)−ξC(λ) |. It turns out that, around λ = 0 (i.e. around
point M), the function ∆ is much easier to evaluate than δ
and this discussion will therefore concentrate on ∆. Note
that, around λ = 0, ∆(λ) = O(λ2) while δ(λ) = O(λ3)
(see Sect. 4.2); the limit of validity of the mean field ap-
proximation, as measured by ∆, is therefore more strin-
gent than the validity limit measured by δ.

By (30),

∆(λ) =
λ2

2

∣∣∣∣d
2x̄

dλ2
− d2χC

dλ2

∣∣∣∣ + O
(
λ3

)
. (47)

One can differentiate (14) and use (15) in the result to
obtain:

∂2xµ

∂λ2
=

1
2

gµν(x(λ, ω), ω) ∂νgαβ(ω)|x(λ,ω)

∂xα

∂λ |λ,ω

∂xβ

∂λ |λ,ω

− gµν(x(λ, ω), ω) ∂αgνβ(ω)|x(λ,ω)

∂xα

∂λ |λ,ω

∂xβ

∂λ |λ,ω
, (48)

which leads to:

d2χµ
C

dλ2 |0
=

1
2

〈
gµν(X, ω) ∂νgαβ(ω)|X

〉
UαUβ

−
〈
gµν(X, ω) ∂αgνβ(ω)|X

〉
UαUβ. (49)

On the other hand, equations (33) and (35) imply:

d2x̄µ

dλ2 |0
=

1
2

ḡµν(X, ω) ∂ν ḡαβ(ω)|XUαUβ

−ḡµν(X, ω) ∂αḡνβ(ω)|XUαUβ . (50)

One thus finds:

d2x̄µ

dλ2 |0
− d2χµ

C
dλ2 |0

= UαUβ

×
{1

2

(
ḡµν(X) ∂ν ḡαβ |X −

〈
gµν(X, ω) ∂νgαβ(ω)|X

〉)

−
(
ḡµν(X)∂αḡνβ |X −

〈
gµν(X, ω) ∂αgνβ(ω)|X

〉) }
.

(51)

The mean-square displacements appearing on the
right-hand side of this equation can be put into a
somewhat more telling form for ensembles of metrics
which, like Σ, describe small perturbations to a cer-
tain mean gravitational field. Indeed, for any metric

gµν(x, ω) = ḡµν(x) + δgµν(x, ω), | δg | / | g |= O(ε) � 1,
a straightforward calculation shows that, generically, the
components gµν of the inverse to gµν can be written as:

gµν(x, ω) = ḡµν(x) − ḡµα(x)ḡνβ(x) δgαβ(x, ω)

+ ḡµα(x)ḡνρ(x)ḡβσ(x) δgαβ(x, ω)δgρσ(x, ω) + O
(
ε3

)
.

(52)

Applying this result to (45), one gets the following,
more explicit expression of the first mean square displace-
ment appearing on the right-hand side of (51):

UαUβ

2

(
ḡµν(X) ∂ν ḡαβ |X −

〈
gµν(X, ω) ∂νgαβ(ω)|X

〉)
=

UαUβ

2

(
hµi(X)∂ihαβ |X +

1
c

hµ0(X)

×
(

2
ȧ

a
(X) hαβ(X) + ∂thαβ |X

))
, (53)

where the indices are raised on h by the Minkovski met-
ric η and ȧ = da/dt. The Latin indices in (53) designate
the ‘spatial’ space-time variables.

An expression similar to (53) can be obtained for the
second mean square displacement in (51). The detailed
analysis of that second contribution will not be considered
here because it confirms the conclusions obtained from the
sole consideration of (53).

We are primarily interested in the scaling properties of
expression (53). Since t is the so-called conformal time, the
quotient ȧ/a is not the Hubble constant H(t) at time t.
Indeed, the comoving time tc is related to the conformal
time t by:

dt2c = a2(t)dt2. (54)

One thus has:
ȧ

a |t
= a(t)H(t). (55)

Let now Lx be the typical size (variation scale) of the
perturbation h, expressed in the chart C. The physical
variation scale of h is then Lp = a(t)Lx. The right-hand
side of (53) contains two types of contributions: the
first and third terms scale as | U |2h2L−1

x , while the
second term scales as | U |2h2aH/c. These contribute
to ∆(λ) (see (47)) two terms, which scale respectively as
λ2| U |2h2L−1

x and λ2| U |2h2aH/c. Note that the second
and third terms on the right-hand side of (53) scale dif-
ferently because, according to (55), the typical variation
scale of the expansion factor a(t) is a(t)H(t), which is
a priori different from the temporal variation scale of the
perturbation h.

By definition of U , λ | U | scales as Dx, the ‘distance’
travelled by the photon during a variation λ of the pa-
rameter, expressed in coordinates x. The corresponding
‘physical distance’ is Dp = a(t)Dx. The function ∆ thus
contains a contribution ∆1 which scales as Dx

2h2L−1
x and

another one, ∆2, which scales as Dx
2h2aH/c.
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It seems reasonable to evaluate the validity of the
mean-field approximation on geodetic motions by com-
paring ∆ to the ‘distance’ Dx. In units Dx, ∆1 scales
as DxL−1

x h2 = DpL
−1
p h2 and ∆2 scales as DxaHh2/c =

DpHh2/c. The mean field approximation is a priori good
as long as these quantities remain much smaller than one.
Conversely, the mean field approximation probably breaks
down after the photon has travelled a physical distance
which makes ∆1 or ∆2 of order one. One thus finds, with
obvious notations:

Dlim
p1 =

1
h2

Lp (56)

Dlim
p2 =

1
h2

cH−1.

Since h � 1, the distance Dlim
p2 can typically not be

reached in the Hubble time. Let us therefore concentrate
the discussion on Dlim

p1 .
Given the typical size Lp of a perturbation, the as-

sociated typical mass µ can be used to evaluate a typ-
ical gravitational potential per unit mass φ = Gµ/Lp,
which corresponds to a typical perturbation of the metric
h = φ/c2 = Gµ/Lpc

2. One thus finds:

Dlim
p1 =

L3
pc

4

G2µ2
(57)

or, equivalently:

Dlim
p1

H

c
= Lp

H

c

L2
pc

4

G2µ2
(58)

The following table gives approximate values for Dlim
p1 H/c

for typical structures. These values have been obtained
with cH−1 = cH−1

0 = 3000 Mpc and the orders of magni-
tude for Lp and µ are taken from [12].

Structure Lp µ Dlim
p1 H/c

Sun 7 × 1010 cm 2 × 1033g ≡ M� 2 × 10−8

Galaxy 15 kpc 1011 M� 6 × 105

Cluster 5 Mpc 1013 M� 2 × 109

Supercluster 50 Mpc 1015 M� 2 × 108

The obtained values strongly suggest that large-scale
structures such as galaxies, clusters and superclusters do
not deviate photons on cosmological scale from the trajec-
tories they would have in the idealized, homogeneous and
isotropic cosmological models4. On the other hand, the
result obtained for the Sun does suggest that small-scale
structures indeed deviate photons on cosmological scale.
This type of lensing needs only be considered in the ‘rare’

4 Of course, the expansion of ∆ in powers of λ around
point M probably ceases to be valid for values of Dp1 compa-
rable to (or much greater than) the Hubble length. The precise
values of Dlim

p1 in the table should therefore not be taken too
seriously; but the orders of magnitude do support the validity
of the mean field approximation over cosmological distances.

cases when such a small-scale structure is very close to the
line of sight of the observed source.

The results of this section thus confirm the global ap-
plicability of the mean field approximation to the study of
motion over the cosmological scale. Naturally, as indicated
earlier, this conclusion definitely needs to be confirmed by
a more systematic, for example numerical analysis.

5.3 On using the mean field approximation
for studying the evolution of a beam of photons

Observing a source S essentially comes down to detect-
ing on Earth particles, let us say photons, emitted by S.
These photons form a ‘narrow’ beam, i.e. there is a ‘not
too important’ spread in the emission direction of these
photons. One of the first problems in interpreting obser-
vations is therefore to model the propagation, not (only)
of a single photon, but (also) of ‘narrow’ beams of pho-
tons in the physical space-time. This connects naturally
with the material presented in this article (in particular
in Sect. 5.2) and in [3]. We now wish to elaborate on this
connection. With the hope to make the following discus-
sion as general and, therefore, as enlightening as possible,
it has been decided to review here how both the general
mean field theory introduced in [3] and the developments
of the preceding sections articulate with the ‘real’ astro-
physical problematics.

Let us consider a beam of photons emitted by a
source S with a certain spread in the emission direction
and propagating towards Earth in a given gravitational
field represented by the metric g. There are two ‘basic as-
sumptions’ behind the standard analysis [13] of the prop-
agation of the beam. The first ‘assumption’ is that each
single photon in the beam propagates along a null geodesic
of the gravitational field g, this geodesic being completely
determined by the frequency and direction emission of the
considered photon at its source (or by its frequency and
direction at any point of its trajectory, including the de-
tector on Earth). The second ‘assumption’ exploits the
a priori ‘narrow’ character of the beam. The standard
reasoning goes as follows: If the beam is ‘sufficiently nar-
row’, the geodesics followed by the various photons are
‘sufficiently close’ to each other and the time evolution
of the spread of the beam can be realistically evaluated
through the so-called geodesic deviation equation [15].
Of course, the expressions ‘sufficiently narrow’ and ‘suf-
ficiently close’ essentially mean that, in a local coordinate
system attached to a point located on the trajectory of
the beam [13], the typical size of the beam is much smaller
than the typical variation scale of the gravitational field.
The analysis then yields a couple of differential equations
for the evolution of the expansion and shear tensor of the
beam [14]. These equations, together with some of their
possible applications, are discussed in [13].

Let us now take into account the fact that we as ob-
servers do not know with absolute precision the gravita-
tional field in which the beam propagates. Indeed, a real
gravitational field is generally fluctuating, both spatially
and temporally, and we often have, at best, indications of
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its mean value and, possibly, of its mean square displace-
ments. It is therefore common to replace, in the afore pre-
sented analysis, the real metric g by a metric ḡ associated
to an average or mean gravitational field, with the hope
that the results about the time evolution of the expansion
and the shear tensor of the beam will be at least statisti-
cally correct, the statistics being made on a large number
of different beams.

For this to be true, both assumptions made in deriving
the Sachs equations have to remain at least statistically
valid if one replaces the real fluctuating gravitational field
by the average or mean gravitational field. Focusing for the
moment on the first assumption only, we are led to con-
clude that using the mean gravitational field in the Sachs
equations will only yield reasonable results if, statistically
speaking, the null geodesics of the mean gravitational field
can be assimilated to the null geodesics of the real fluc-
tuating field. In other words, a necessary condition for
the mean field approximation to yield physically realistic
results when applied to Sachs equations is that, on the
average, the motions of single photons in the fluctuating
field be well approximated by motions in the mean field.

To check if this condition applies, it is obviously neces-
sary to have a precise definition of the mean gravitational
field in terms of the unaveraged one. It is at this point
that the results presented in [3] enter the discussion. Since
the equations of general relativity are non linear, the pre-
cise delineation of the very concept of mean gravitational
field is non trivial. This problem has been addressed in [3]
within a purely statistical approach. This is clearly the
most general approach possible, and more classical tempo-
ral and spatial averages can always be recast as statistical
averages [3]. The main result of [3] can be stated as fol-
lows: the only way to ensure the mean gravitational field
does obey the equations of general relativity5 is to take
its metric ḡ to be the average of the metrics g(ω) over the
statistical ensemble of space-times used to represent the
(unaveraged) fluctuating gravitational field.

Whereas [3] dealt with the problem of defining what a
mean gravitational field is, the present article establishes
(in Sect. 4) a local correspondence between the geodetic
motions in such a mean gravitational field and the average
geodetic motions in the space-times of the statistical en-
semble used to construct the mean field. Succinctly stated,
given a statistical ensemble Σ of space-times which rep-
resents a fluctuating gravitational field, all geodesics of
the mean field can be viewed as statistical averages of
geodesics belonging to the various members of the en-
semble. Somewhat loosely speaking, the averages of the
geodesics of the fluctuating field are identical to geodesics
of the mean field. As repeatedly emphasized earlier, the
preceding statement is only local (in the mathematical
sense of the word) but the results of Section 5.2 strongly
suggest that its applicability actually extends, in cosmol-
ogy, up to the Hubble length6.

5 If the original unaveraged field does.
6 If one neglects the ‘rare’ events for which a very small

‘structure’ like a star is sufficiently close to the line of sight
to induce a strong lensing.

Thus, the results presented in this article justify at
least locally, and probably up to scales comparable to the
Hubble-length, the first of the two conditions necessary for
the use of the mean gravitational field in Sachs equations.

Now to the second condition. Let us suppose that
Sachs equations realistically describe the evolution of the
beam in the unaveraged gravitational field. As already
elaborated upon, this essentially means that the spread of
the beam is much smaller than the typical variation scale
of the unaveraged field. Since the typical variation scale
of the averaged field is necessarily larger than the varia-
tion scale of the unaveraged one, the spread of the beam
is then also much smaller than the variation scale of the
averaged field. And this is precisely the second condition
which warrants that the combined use of the mean gravi-
tational field and of the Sachs equations describe properly
the average spreading and shearing of the photon beam.

The work presented in [3] and in the preceding sections
of the present article thus fully justifies the mean field
approximation in Sachs equations.

6 Summary and conclusion

A recent work [3] has given a precise meaning to the
mean field approximation in general relativity. The aim
of the present article was to investigate if the geodesics
of the mean field could be considered as averages of the
geodesics of the unaveraged field. To make this article as
self-contained as possible, the precise construction of a
mean space-time associated to a given statistical ensemble
of space-times has been reviewed in Section 2. In Section 3,
I have presented in detail the two standard possible defini-
tions of geodesics in Einstein space-times, devoting more
attention to the second, variational definition because it
is ideally suited to an in depth study of the working of the
averaging procedure introduced in Section 2.

Section 4 contains the main result of the article. Suc-
cinctly stated, it has been shown that any (given) geodesic
of the mean space-time can be considered locally as the
average of a collection of geodesics, each geodesic in the
collection belonging to one of the space-times in the statis-
tical ensemble under consideration. This result has been
further discussed in Section 5, where related astrophysi-
cal and cosmological issues have also been addressed. In
particular, strong arguments have been given to support
mean field theory as a realistic tool to describe geodetic
motions on the scale of the Hubble length and the use of
the mean field approximation in Sachs optical equations
has been justified.

Let me end this article by mentioning some important
extensions of the work which has been presented here.
First of all, the validity of the mean field approximation
on cosmological scales should be investigated in full detail,
for example via computer simulations, if only to make the
conclusions reached in Section 5 of this article stand on
firmer ground. On the contrary, one can wonder on how
misleading the mean-field approximation would be when
applied to gravitational fields with fluctuations of ‘large’
amplitude and/or ‘high’ frequency.
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In a more general direction, is it possible to extend
the results presented in this article to situations where
the topology of the space-time is not fixed, but is itself
averaged upon? This promises to be a most difficult but
hopefully very rewarding step and its completion might
open new vistas on several fields of great theoretical in-
terest, such as early universe cosmology or quantum field
theory in curved space-time.

It is a pleasure to thank both (anonymous) referees whose var-
ious suggestions definitely led to a substantial improvement of
the article.

Appendix A

Terminology

Given a manifold equipped with a metric g and the
Levi-Civita connection Γ (g) of that metric, an object
defined on that manifold will be called intrinsic if its
definition involves only the metric g (and its various
derivatives). For example, the curvature tensor of the
Levi-Civita connection of the metric is an intrinsic quan-
tity. On the contrary, the coordinates of a point or the
components of a tensor field in a given chart C are not
intrinsic quantities because their definitions involve the
chart C; to mention another example, the projector ∆ onto
the subspace orthogonal to a certain vector field U is not
intrinsic either because the definition of ∆ involves U .

By extension, given a statistical ensemble Σ of
space-times M(ω) (see Sect. 2.1), each M(ω) being
equipped with a metric g(ω) and the Levi-Civita connec-
tion Γ (g(ω)) of that metric, an object (typically defined
on the mean space-time M̄ associated to Σ) will be called
intrinsic if its definition only involves the various met-
rics g(ω).

Now, we will say that a certain statement or a cer-
tain set of equations is covariant if the same statement or
set of equations, once true in a certain chart, is also true
in all other charts. For example, the statement ‘R = 0
at point M ’, where R is the scalar curvature of Γ (g), is
a covariant statement about an intrinsic object. On the
contrary, ‘R01 = 0 at all points’ is a non covariant state-
ment about an intrinsic object; indeed, the Ricci tensor is
intrinsically defined but the truth of the relation R01 = 0
depends on the coordinate system used on the manifold.

Let me end this section by giving examples of covariant
and non covariant statements about non intrinsic quanti-
ties. Given a vector field U normed to unity, the rela-
tion ∆µν = UµUν − gµν can be viewed as a covariant defi-
nition of the projector ∆ (which is a non intrinsic object)
onto the subspace orthogonal to U . On the contrary, the
statement ‘∆00 = U0U0 − 1 at all points’ is non covariant
because it is only true in the charts where g00 = 1 at all
points.

Covariant definitions of various curves considered
in the article

This section of the Appendix offers some further com-
ments on various possible definitions of the curves χC
and ξC introduced in Section 4.

As already mentioned several times, these curves are
not intrinsic averages of the geodesics in the collec-
tion σM,U . In Section 4, χC has been defined by equa-
tion (16) and ξC has been defined by (23) and (24). None of
these equations, is covariant. For example, the mean value
in (23) is obtained by simply adding the coordinate-basis
components of vectors defined at different points in space
time, and writing such a sum covariantly necessitates the
explicit introduction of a connection (for example, through
its coordinate-basis coefficients). Let us therefore investi-
gate how the non intrinsically defined curves χC and ξC
can be given covariant definitions.

Let us start with χC . The chart C is associated to
a bi-continuous mapping φC defined from an open sub-
set of the space-time which contains point M onto IR4.
Let N(λ, ω) be a running point on the geodesic γ(ω) and
let NC(λ) be a running point on χC .

A covariant definition of χC reads:

NC(λ) = φ−1
C (〈φC (N(λ, ω))〉) , (59)

where φ−1
C is the inverse to φC and

〈φC (N(λ, ω))〉 =
∫

Ω

φC (N(λ, ω)) dpω, (60)

dpω being the probability measure on Ω. Equation (60)
makes mathematical sense because IR4, unlike the
space-time manifold, is also a vector space, the ‘points’
of which can therefore be added to one another or multi-
plied by real numbers.

Note also that (59) supposes that 〈φC (N(λ, ω))〉 be-
longs to the domain of φ−1

C . In particular, definition (59)
might fail to make sense if the domain of φ−1

C is not convex.
The curve χC can therefore not be defined for all charts
of all space-times.

Finally, definition (59) makes clear that the curve χC
depends on C because the mapping φC itself is part of the
definition of chart C.

We will now give a covariant definition of the curve ξC .
To that purpose, let us introduce the connection ΓC , the
coefficients of which identically vanish in chart C. This
connection obviously depends on C because its coefficients
in a different chart C′ do not generically vanish, which
proves that ΓC �= ΓC′ . Of particular importance is the fol-
lowing property of ΓC . If one parallel transports an arbi-
trary tensor with the connection ΓC from a given point A
to a given point B along a certain curve L, the result will
actually not depend on L because the Riemann curvature
tensor of ΓC vanishes identically. This can be most easily
proven by a direct calculation using the chart C.

Let now σM,U be the collection of geodesics to be
averaged, N(λ, ω) a running point on the geodesic γ(ω)
and consider the family F of curves (or set of points)
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Cλ = {N(λ, ω), ω ∈ Ω}. This family depends on the col-
lection σM,U , but not on the chart C. Now, for each λ,
choose an arbitrary point Q(λ) (for example on Cλ) and,
for each ω, parallel transport the vector p(λ, ω), cotangent
to the geodesic γ(ω) at point N(λ, ω), from point N(λ, ω)
to point Q(λ) (for example, along the curve Cλ) using the
connection ΓC . That way, you obtain for each ω a bona fide
cotangent vector at point Q(λ). And, by a preceding re-
mark, the result does not depend on the curve along which
the covector p(λ, ω) is parallel transported to point Q(λ).

Compute then the average7 τ(λ) of all the obtained
vectors cotangent to the space-time at point Q(λ). This
is a possible (and intrinsic) operation because the space
cotangent to the space-time manifold at point Q(λ) is a
vector space.

Let us now parallel transport this covector τ(λ) to ev-
ery point of space-time using again the connection ΓC . The
resulting covector field τ̂ (λ, .) is uniquely defined because,
as already noted, the parallel transport of a tensor with ΓC
between points does not depend on the curve along which
the transport is carried out. Note also that, for the same
reason, the covector field τ̂ (λ, .) does not depend on the
choice of Q(λ) either.

The mean metric ḡ, which is intrinsic to the statistical
ensemble Σ, can then be used to generate the tangent
vector field u dual to τ̂ . The curve ξC is then defined as
the integral curve to u which passes through point M .

This definition makes clear that ξC is not an intrin-
sic object because the curve depends on C through the
connection ΓC .

A final remark. It may be tempting to try defining an
intrinsic average of the geodesics in σM,U by simply replac-
ing the connection ΓC entering the definition of ξC by an
intrinsically defined connection over the mean space-time,
for example the connection Γ̄ of the mean metric. But
this connection has a generically non-vanishing curva-
ture tensor and, in general, the parallel transport of
a tensor between two points using Γ̄ will depend on the
curve along which the transport is carried out. When
implemented with Γ̄ instead of ΓC , the whole preceding
procedure thus produces a result that depends a priori on

7 Over ω.

both the choice of Q(λ) and on the choice of the curves
used in the various parallel transports. Even if one chooses
these curves to be geodesics of the mean metric, the choice
of point Q(λ) remains rather arbitrary; therefore, the
method does not seem to permit an intrinsic definition
of the average of σM,U .
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